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The role of wave-induced separated flow in solute transport above a rippled bed is 
studied from numerical solutions to the two-dimensional Navier-Stokes equations and 
the advection-diffusion equation. A horizontal ambient flow that varies sinusoidally 
in time is imposed far above the bed, and a constant concentration difference between 
the upper and lower boundaries of computation is assumed. The computed flow field 
is the sum of an oscillatory rectilinear flow and a vortical flow which is periodic 
both in time and in the horizontal. PoincarC sections of this flow suggest chaotic 
mixing. Vertical lines of fluid particles above the crest and above the trough deform 
into whorls and tendrils, respectively, in just one wave period. Horizontal lines near 
the bottom deform into Smale horseshoe patterns. The combination of high shear 
and vortex-induced normal velocity close to the sediment surface results in large 
net displacements of fluid particles in a period. The resulting advective transport 
normal to the bed can be higher than molecular diffusion from well within the 
viscous boundary layer up to a few ripple heights above the bed. When this flow 
field is applied to the transport equation of a passive scalar, two distinct features 
- regular temporal oscillations in concentration and a linear time-averaged vertical 
concentration profile - are found immediately above the bed. These features have also 
been observed previously in field measurements on oxygen concentration. Advective 
transport is shown to be dominant even in the region where the time-averaged 
concentration profile is linear, a region where vertical solute transport has often been 
estimated using diffusion-type models in many field studies. 

1. Introduction 
The remineralization of detrital organic matter by bacteria in marine sediments is 

an important link in the global carbon cycle. Many remineralization processes can 
progress only in the presence of oxygen, and are therefore dependent on the oxygen 
flux from the oxygen-rich water into the oxygen-poor pore water in the sediments. 

Coastal sediments are often sandy with uneven surfaces such that the flows above 
are usually separated. Such vortical flows, generated for example when the ambient 
water is induced into oscillatory motion under surface gravity waves, provide an 
efficient mixing mechanism immediately above the sediment bed and enhance the 
vertical transport of dissolved substances from the water column into interstitial pore 
water. 
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Gundersen & Jmgensen (1990) measured the vertical distribution of oxygen at the 
sediment-water interface in water 15 m deep. They found that the time-averaged 
concentration was indeed nearly constant except in a thin layer immediately above the 
sediment surface, where the mean concentration decreased linearly with decreasing 
elevation. Within this layer, which was about 0.6 mm thick, molecular diffusion 
was believed to be the dominant transport mechanism and a diffusion-type transport 
model was used to estimate the vertical flux of solutes. However, comparisons with 
actual flux measurements suggested that such an ‘empirical diffusion coefficient’ would 
have to be a few times higher than that of molecular diffusivity. 

Interestingly, the oxygen concentration in the middle of this ‘diffusive boundary 
layer’ (DBL) oscillated in time with a magnitude of more than 10% of its mean value 
and at the frequency of the prevalent surface gravity wave. As the length scale of 
molecular diffusion of oxygen (with a diffusivity typically of m2s-’) over a wave 
period was considerably smaller than the thickness of the DBL, diffusive transport 
alone could not explain such temporal variations. Another plausible explanation, that 
due to percolation, could only account for oscillations at a much smaller magnitude 
due to the small wave-induced pore water flow. Gundersen & Jnrrgensen (1990) 
attributed the oscillations to ‘numerous eddies which approach the sediment surface 
from the bulk of the flowing sea water and hit the viscous and diffusive sublayers’, but 
details of the physical mechanism involved had not been explored. More importantly, 
if the effects of ambient vortices were prominent in the DBL, would a diffusive-type 
transport model be adequate to describe the vertical flux of solutes? 

Aside from ambient turbulence, vortical motions close to the sediment bed may 
also be due to flow separations at the lower boundary caused by small-scale surface 
topography under the actions of gravity waves and currents. Among the different 
forms of surface roughness, sand ripples are probably the most common in coastal 
sediments, and their often periodic and two-dimensional profiles under a wide range 
of flow regimes are particularly conducive to analytical treatment. To investigate the 
effects of vortical motions on vertical solute transport immediately above a sediment 
bed, a periodic ripple profile will therefore be assumed in this study as an illustrative 
example of the effects of bottom roughness. 

Even though the flow over sand ripples induced by the passage of gravity waves has 
received much attention (see for example the review of Mei & Liu 1993), analytical 
studies on the transport immediately above a rippled surface are few and have been 
limited to two-dimensional unidirectional flows. These include the empirical turbu- 
lence transport model of Thorsness & Hanratty (1979) and the numerical solutions 
of Vittori & Tanda (1991), with the latter on the slightly different case of a channel 
with horizontal wavy walls at the bottom. For oscillatory flows but under slightly 
different physical setups, Sobey (1985) simulated the dispersion of fluid particles in a 
furrowed channel and Ghaddar et al. (1986) analysed the enhanced heat transfer in 
a rectangular grooved channel. Both studies solved the flow and transport equations 
numerically. Owing to the differences in the physical systems, these results cannot be 
applied directly to the wave-induced vertical transport in the benthic boundary. 

The flow field above a sediment bed is always turbulent. However, flow separations 
and persistent vortical motions, the dominant features in wave-induced oscillatory 
flows over sand ripples, have been found to be prominent even when the ambient 
flow is much weaker such that the flow field is amenable to numerical simulations 
(Blondeaux & Vittori 1991a). Such deterministic flow fields, despite their relatively 
simple features, can lead to chaotic mixing (Ottino 1989). In a physical setup that 
shares many of the same characteristics, Sobey (1985) has shown numerically that 
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an initial blob of particles would indeed disperse in a complicated pattern when the 
oscillatory flow in a furrowed channel is separated. 

To gain a better understanding on the solute transport in a wave-induced separated 
boundary flow, numerical solutions to the Navier-Stokes equations and the transport 
equation will be analysed in the following. A two-dimensional flow field bounded 
below by rigid and spatially periodic ripples is driven by an imposed oscillatory 
ambient flow. Ambient turbulence is not modelled and the only vortical flows 
originate from separations at the bottom boundary. This assumption is consistent with 
the observations of Gundersen & Jlargensen (1990) since oscillations in concentration 
at the wave frequency suggest that boundary-generated vortical flow, rather than 
random ambient turbulence, is at work. As truncation errors of the advective terms 
exceed molecular diffusion at low diffusivity and therefore limit the range of validity 
of the numerical solution to the transport equation, the kinematics of the computed 
flow field is analysed to infer the nature of solute transport at low diffusivities (the 
molecular diffusivity of oxygen, and those of many other solutes of practical interest, 
are typically that of kinematic viscosity). I aim to explain the mechanisms leading 
to the temporal fluctuations in solute concentration and quantify the magnitude of 
vertical transport of dissolved substances close to the sediment surface. 

The formulation and numerical procedures are outlined only briefly in $02 and 3 
as they have been reported elsewhere. In g4 and 5 the flow field of interest and 
the corresponding concentration field for a case of high molecular diffusivity are 
presented. Extension to low molecular diffusivity is inferred from the kinematics of 
the flow field in $6. The relevance of these results to benthic transport processes is 
discussed in $7. 

2. Formulation 
A semi-infinite Newtonian fluid of constant density is driven by an imposed 

oscillatory pressure gradient above a rippled bed with a periodic profile. Navier- 
Stokes equations in two dimensions are solved numerically in terms of streamfunction 
y and vorticity c i ~  in the vertical strip between two adjacent ripple crests and truncated 
sufficiently high above the bed. The computational domain (x, y )  is a rectangle 
mapped conformally onto the physical plane (2, 9 )  in nondimensionalized coordinates. 
This flow model is identical to that in Shum (1988) and Blondeaux & Vittori (1991a,b). 

All physical variables are nondimensionalized with the ripple length L, period and 
amplitude of the ambient oscillatory velocity T and U ,  and concentration at the 
upper boundary co. The streamfunction is scaled with U L  and vorticity with U / L .  
The governing equations in the transformed plane take the form 

and 

a2y a2y 
aX2 ay* ~ + - = -Jw, 
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where 
aa ax 
ax ay 

ay ajj 
ax ay 

- -  

J(X,Y) = 

- -  
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(2.4) 

{%,(x), j j r [Rr(x) ] )  = 

where s = 2a/L is the mean ripple steepness (zs is the maximum slope in the profile) 
and a is half the ripple height. This profile closely resembles sand ripples generated 
in the laboratory (Du Toi & Sleath 1981). The corresponding conformal mapping is 
(Benjamin 1959) 

(2.7) 1 x - isexp(-2ny) sin 2nx { ;  I = {  y + isexp(-2ny) cos 2nx 

and the Jacobian is 

J = 1 + z2s2 exp(-4ny) - 211s exp(-2ny) cos 2nx. (2.8) 

The bottom boundary conditions on the ripple surface y = 0 are 

- and c = O .  (2.9u, b )  

The flow field is forced by small-amplitude gravity waves with a wavelength and a 
water depth assumed to be much greater than the ripple length. The wave-induced 
velocity and horizontal pressure gradient near bottom can then be approximated as 
sinusoidal in time and independent of x. The concentration is assumed constant high 
above the bottom boundary. The conditions at the upper boundary y = y,,, of the 
truncated computational domain are therefore 

y , = - - o  ay, 
a Y  

av 
- = 0, - = U,(t) = sin 2nt, and c = 1. 
dX dY 

(2.10a - c )  

Note that (2.10) implicitly imposes an oscillatory pressure gradient in the horizontal 
that would drive the ambient fluid with velocity U,(t) high above the bed.? This 
pressure gradient provides the forcing mechanism and leads to a viscid layer only at 
the bottom boundary. 

t A derivation of this equivalence is given in the Appendix. 
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The boundary conditions (2.10) are imposed at the top of the computational domain 
instead of at y 4 00, even though the latter would correspond directly to the physical 
problem. To define boundary concentration at y --+ 00 would require, in order to 
maintain a downward flux of solute, that c + ay or the transport equation (2.3) be 
modified to allow for some kind of ‘turbulent transport’. To avoid these options, the 
boundary conditions (2.10) are defined at y = ymax instead for expediency. 

The flow field and concentration field are assumed to be periodic in x such that 

Y(x = 0, y7 t )  = y (x  = 1, y ,  t )  (2.11a) 

and 

c(x = 0, y, t )  = c(x = 1, y, t) .  (2.11b) 

3. Numerical algorithm 
The numerical scheme for (2.1) and (2.2) has been discussed in detail in Shum (1988). 

A pseudo-spectral (collocation) method is used in which derivatives in x are computed 
in the Fourier space while the nonlinear terms are evaluated in the physical space. 
Derivatives in y are computed by second-order centred-differencing. Time stepping is 
through a split-step-type scheme with the convective terms in the vorticity equation 
simulated by a third-order Adams-Bashforth scheme and the viscous terms by an 
Euler forward scheme. The Poisson equation (2.2) is solved in the Fourier space by 
compact differencing. 

Even though this scheme shares many of the features in the simulations of Blon- 
deaux & Vittori (1991a,b), there are a few differences. In their papers, Euler forward 
was used for the advective terms, the y-derivatives in the Poisson equation were 
simulated with second-order centred-differencing, and a dealiasing scheme was used 
for the spectral derivatives. 

To verify the accuracy of the numerical scheme, solutions of (2.1) and (2.2) for 
closely related flows have been compared quantitatively with solutions obtained 
analytically or numerically. This includes the exact solution for the impulsively 
started oscillatory flow over a plane bed (Carslaw & Jaeger 1963, $47, p.110), the 
numerical solution for the flow around an impulsively started circular cylinder based 
on a finite-differencing scheme (Ta Phuoc LOC 1980), and the asymptotic solution to 
the oscillatory flow above a rippled bed for R = 630,s = n/4, and s = 0.1 (Hara & 
Mei 1992). Good agreements were found in all these comparisons. Details can be 
found in Shum (1988). 

Lagrangian particle tracking in the flow field with velocity components (yy7 -yx )  
is performed using Euler forward with linear interpolation in space. Time-steps of 
NN 0(103) to 0(104) per wave period are used, and the convergence of these solutions 
is confirmed from computations using different time steps. 

The numerical scheme for the transport equation (2.3) is the same as that in 
(2.1). The numerical solutions have also been compared with the solutions to the 
conservative form (Anderson, Tannehill & Pletcher 1984) 

J - + -  ac at s 7c [ - ax a ( c- ;)-;(cg)] =L(”+$). P R S  ax2 
(3.1) 

The discrepancies between the two solutions are small (under 3%). 
The flow at the start of computation is that of an oscillatory flow in the mapped 

plane (Stokes second problem, Schlichting 1968, SV.7, p.93). The solution to (2.1) and 



272 K .  T. Shum 

(2.2) with J -1 is assumed, that is, 

“11 7T 

4 4 
(3.2) 

( 
1 

y ~ x ,  y ,  t )  = y sin 2nt - - [exp(-by) cos 2nt - b y  + -) - cos (2nt + - 
P J 2  

evaluated at t = 0, where p = (RS)’I2. Note the phase lead of ys at small y .  An initial 
linear concentration profile 

cs (x, Y ,  t = 0) = Y/Ymax (3.3) 

is also assumed. 
A non-uniform grid is used in the vertical and the grid size increases exponentially 

with y .  Grid spacings at the bottom boundary are set to be a fraction of the diffusive 
boundary layer thickness over a flat bed, which is of the order of ( K T ) ’ / ~ / L  = 
(n/PRS)’/2.  The same 32 x 109 grid with y,,, = 3 is used in the computations of 
(2.1), (2.2) and (2.3). The upper boundary is confirmed a posteriori to be well above 
the vertical extent of the vortical flow. Computations are performed in 64-bit real 
numbers. 

In the solutions reported below, the Fourier spectra of the vorticity have been 
examined to ensure that aliasing effects are small in the computations of nonlinear 
terms in (2.1) and (2.3), and that all Fourier components with nonzero wavenumbers 
vanish close to the upper boundary. In addition, momentum balance and mass balance 
of solutes over the computational domain are used as global checks of numerical 
accuracy as follows. The discrepancies in the conservation equations for momentum 
and mass of solutes are computed from the numerical solutions. These discrepancies, 
which give estimates of the numerical errors, are compared with the magnitudes of 
individual terms in the momentum and mass balance equations. These magnitudes 
are computed with w - y s  and c - c,, where y, is the streamfunction for Stokes flow 
(3.2) and c, is the linear concentration profile (3.3). In both cases, the discrepancies 
are always under 1% of the magnitudes. (This percentage error would have been 
much smaller if the discrepancy is compared with the magnitudes of w and c as 
the vortices-induced flow is much weaker than the ambient oscillatory flow.) Details 
of the accuracy checks in the computation of the flow field have been discussed in 
Shum (1988). 

4. Flow field 
Numerically computed oscillatory flows over spatially periodic ripples have been 

discussed in Shum (1988) and Blondeaux & Vittori (1991a,b) over a range of dimen- 
sionless parameters R, S and s. The flow field ranges from being periodic in time and 
symmetric over the two halves of a wave period at low dimensionless numbers, to 
periodic but asymmetric as these numbers increase, to aperiodic (and asymmetric) at 
higher dimensionless numbers. Here, symmetry in the flow field is defined as 

w (1 - x, Y, t + 5 )  = --Y (x, Y ,  t ) ,  (4.1) 

that is, the flow at any time in the second half-period is a mirror image (about a 
vertical through the ripple crest or through the ripple trough) of the corresponding 
instant in the first half-period. Recall that the numerical algorithm (spectral method 
in x) imposes a spatial periodicity of one ripple length in the horizontal. 

When the Strouhal number is not much smaller than unity and the values of s and 
R are moderate (!= 0.1 and NN lo3, respectively), one vortex is generated in each half 



Wave-induced solute transport above a rippled bed 273 

of a wave period and two counter-rotating vortices are found close to the rippled bed 
at all times. These vortices drift horizontally with the ambient flow, with one of the 
pair merging with the newly generated vortex in each half-period. As R increases, 
vortices generated previously are not dissipated immediately, nor do they always 
merge with existing vortices. This leads to a fairly complicated flow pattern with 
multiple vortices found further above the bed. These vortices can have significant 
influence on the dynamics of each other, and they also modify the conditions under 
which new vortices are generated. Consequently, the flow field differs from one wave 
period to the next, and aperiodic solutions are found at high R even after many 
periods of computations. 

A relatively simple flow field with moderate dimensionless numbers is used in this 
study to explore the transport properties of a separated flow. The Strouhal number 
is unity such that the magnitude of displacement of a fluid particle far above the 
bed is one ripple length. Note, however, that the movements of the vortices near 
the bed are quite different from the water motion in the far field. Simulations 
with nonintegral multiples of S have resulted in flow fields which are qualitatively 
similar, and have been discussed in Blondeaux & Vittori ( 1 9 9 1 ~ )  and Shum (1988). 
The Reynolds number R = 1250 is chosen such that the solution is time-periodic but 
slightly asymmetric, where symmetry is as defined in (4.1). The mean ripple steepness 
s is 0.1. Time periodicity allows analysis using Poincare sections. The thickness of the 
‘Stokes boundary layer’ in this case is 

Computations for P = lo3 were initially planned and the vertical grid is chosen 
accordingly to resolve the diffusive boundary layer. The vertical grid spacing at the 
ripple surface is therefore scaled with O(d,/L) where 

which is around 1.6 x 
to 9.9 x at the upper boundary.? The time step is determined from the von 
Neumann criteria and is around 6 x 

In the following, the velocity field in the twenty-seventh period of computation is 
used. At this time, the maximum variation in streamfunction value at any grid point 
from that at the same phase in the twenty-sixth period is less than 2 x 

Figure 1 shows the periodic flow field in the first half of the wave period when the 
ambient flow is from right to left. The streamfunction shown is w - ys, the difference 
between the computed flow and the Stokes flow ys, (3.2). Two distinct vortices 
with opposite circulations are present above each ripple throughout the half-period, 
reaching up to close to a ripple length above the rippled bed and advect horizontally 
with the ambient flow. At the start of the wave period (U  = 0 at t = 26, figure la), 
the vortex to the left of the ripple crest (labelled R) is stronger and closer to the bed. 
It has an anti-clockwise rotation and has just merged with the vortex generated in the 
preceding half-period. The high velocity gradient between this vortex and the ripple 
surface adds to the vertical shear of the Stokes flow ws, which is in the same direction 
at the time. 

x gave inadequate resolution. These results are therefore not presented. 

for P = lo3, and increases exponentially from 3.3 x 

t Fourier spectra of the computed concentration field for P > 10 showed that 32 grid points in 
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FIGURE 1. Contours of streamfunction y - ys over the first half of a wave period for s = 0.1, 
R = 1250 and S = 1. The results shown are for the twenty-seventh wave period, and the computation 
starts with the flow field ys. The streamfunction y is the computed flow and tps = y,(y, t )  is the 
oscillatory rectilinear flow in the mapped plane (3.2). The flow field is periodic in time at the 
frequency of ambient oscillations and spatially periodic over one ripple length. The contour interval 
is h p  = 0.015. The ambient flow U ( t )  is from left to right and R marks the anti-clockwise vortex 
initially at the left of a ripple crest at the beginning of the wave period, (a) U = 0, t = O(modu1o 1); 
(b) U = 1/ J2, t = 0.125(modulo 1); (c) U = 1, t = 0.25(modulo 1); ( d )  U = 0, t = 0.5(modulo 1). 

Both vortices advect to the right as the ambient flow increases in that direction, with 
a new vortex developing at the lee of the ripple crest (figure Ib). By the time ambient 
velocity attains its maximum, the new vortex has merged with the existing one with 
the same rotation (figure lc)  such that at the end of the half-period (figure Id), two 
vortices are once again found over a ripple length. The vortex to the right of the 
ripple crest is now the stronger one, and the flow is slightly asymmetric to that at the 
beginning of the half-period. As the ambient flow reverses in direction, the vortices 
evolve in a manner similar to that in the previous half-period. 

As the two vortices with opposite rotations move back and forth above the ripple 
surface, they churn up the fluid close to the bottom in a way similar to the two 
rotating whisks of an electric mixer. The coupling of the high shear between the 
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FIGURE 2. Contour plot of the concentration field at the end of 123 periods of computation ( t  = 0, 
modulo 1) starting with a linear concentration profile in y (3.3) for s = 0.1, R = 1250, S = 1, and 
P = 1. The contour values increase from zero at the ripple surface to 0.26 at the top at regular 
intervals of 0.01. The concentration field is spatially periodic over one ripple length and time 
periodic at the wave frequency. The computational domain is approximately three ripple lengths in 
height but only the bottom third is shown. 

vortices and the ripple surface and the normal velocity of fluid particles induced by 
the vortical flow leads to an efficient mixing mechanism. 

5.  Concentration field 
The concentration field computed from the transport equation (2.3) with P = 1 is 

examined in this section as an illustration of the mixing characteristics of the flow field 
discussed in the previous section. The flow field is time-periodic and the numerical 
solution for 26 < t < 27 is used. The time step used in solving the transport equation 
is O(10P5) and the velocity field is linearly interpolated in time from data at some 
2200 instants over the wave period. The concentration field discussed below is that 
after 122 wave periods of computation starting from the linear concentration profile 
(3.3). At this time the concentration field is nearly time-periodic, and the maximum 
difference in concentration at any grid point from that at the same phase in the 
previous wave period is less than loP4. 

The effects of vortical motions on solute distribution are evident in the contour 
plot of the concentration field (figure 2, t = 123). The vortices with opposite rotations 
induce downward fluid motion in the region above the ripple trough (compare with 
figure la ) .  This brings fluid at high solute concentration towards the ripple surface, 
and at the same time fluid at low solute concentration close to the crest is transported 
upwards, resulting in the concentration pattern shown. As the vortices move back and 
forth above the rippled bed, the concentration contours are displaced accordingly. 
This temporal variation of the solute distribution is straightforward and therefore 
concentration contours at other times will not be shown. Further above the bed, the 
concentration is close to the initial distribution (3.3) as the vortical motion there is 
weak and the concentration contours remain horizontal. 
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FIGURE 3. Variations of local concentration values with time at y = 0.025, 0.1 and 0.5 for s = 0.1, 
R = 1250, S = 1, and P = 1. The concentrations are, for the curves from top to bottom (a)  at 
0.457,0.076, and 0.018 ripple lengths above the ripple crest; and (b )  at 0.552,0.123, and 0.033 ripple 
lengths above the ripple trough. 

5.1. Temporal variations 

Figure 3 shows the variations in concentration with time at increasing elevations 
above the crest and above the trough, from well within the viscid boundary layer to 
around half a ripple length above the bed. Concentrations at all locations oscillate 
at a frequency twice that of the ambient flow and with a magnitude comparable to 
those of their mean values. Concentrations along the same vertical are roughly in 
phase, and those above the crest are at a phase shift of a quarter of a wave period 
from those above the trough. Such temporal variations can be inferred from figure 2 
and correspond directly to the locations of the advecting vortices (figure 1). 

Other features in figure 3, however, cannot be as easily explained from the vortical 
flow field. For example, along a vertical through the ripple crest, there is a slight phase 
lead in local concentration close to the ripple surface. Such a phase lead, however, 
is not found above the trough. The maxima in concentration have shorter durations 



Wave-induced solute transport above a rippled bed 

0.05 0.10 0.15 

Concentration 

277 

FIGURE 4. Vertical concentration profiles for s = 0.1, R = 1250, S = 1, and P = 1. The ordinate 
is jj - E(%) (see 2.6). For P = 1 (v = K), the thickness of the Stokes viscid boundary layer and 
the oscillatory diffusive layer is the same, 0(6 , /L )  = (vT)i/2/L = (rcT)'/*/L = ( x / R S ) ' / ~  = 0.05. 
Profiles (a) t = 122.75; (b) t = 123; and (c) mean over 122 c t < 123 are above the crest and 
profiles (d)  t = 122.75; (e) t = 123; and ( f ) ,  mean over 122 < t < 123 are above the trough. 

above the crest, and the variation with time is most irregular at about one ripple 
height above the surface. 

5.2. Vertical profiles 
The time-averaged concentration profiles, both above the crest and above the trough 
(122 < t < 123, curves c and f, figure 4), are typical of the profiles obtained in field 
measurements (e.g. in Gundersen & Jsrgensen 1990). In the layer immediately above 
the ripple surface, the concentration gradient is nearly linear. Its thickness is of a 
similar magnitude to that in the diffusive transport over a plane bed under oscillatory 
flow, 0(6 , /L )  = 0.05 (equation (4.3)). The concentration gradients at the crest and 
the trough are 86% and 35%, respectively, higher than that of the linear profile (3 .3) .  

Above the layer of linear concentration gradient is a region with a concentration 
that is fairly uniform, and extends to more than two ripple heights above the sediment 
surface. Apparently this uniform concentration is due to mixing by the vortical flow. 
Further above where the vortical flow is weak, diffusive transport dominates and the 
concentration approaches a linear profile. The instantaneous profiles above the crest 
(curves a and b, figure 4) and above the trough (curves d and e),  when the ambient 
velocity is at maximum and at rest, show the large magnitude of temporal variations 
in local concentration values.? 

A linear mean concentration profile in the vertical has often been assumed to be 
the signature of diffusive-type transport. Figure 1 shows that there is an appreciable 
vortex-induced normal velocity close to the bottom where the time-averaged con- 
centration gradient is linear (figure 4). Contributions from advective transport can 
hence be appreciable. Furthermore, there can be net local advective transport in the 
horizontal over a wave period. I shall quantify this advective transport in $6.3. 

t The concentration contours are displaced to the right and to the left over the wave period 
according to the instantaneous positions of the vortices. The flow cross-section is smallest above 
the ripple crest and largest above the ripple trough. The vertical concentration gradient is therefore 
higher above the crest than that above the trough, and the concentration profiles above the crest 
and above the trough would give the range likely found for profiles in between. 
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FIGURE 5. Poincark sections of 420 fluid particles (at t = 1,2,3, ..., 200) for the time-periodic flow 
field of s = 0.1, R = 1250, and S = 1. At t = 0, the tracer particles are distributed uniformly over a 
unit square in the mapped plane (0 < x < 1,0  < y < 1) as marked by the x in (b) .  The ripple length 
over which the particles are initially placed is between the two arrows below the ripple crests. (a )  
The dispersion of 420 particles in 200 periods; (b)  an expanded view of the sections over which the 
ripple length the fluid particles originate. 

6. Kinematics of the flow field 
Whereas the concentration field presented in $5 reproduces the main features ob- 

served in the field measurements of Gundersen & Jorgensen (1990), reliable numerical 
solutions to the transport equation are feasible only at moderate values of P .  To gain 
further understanding on the characteristics of advective transport in the separated 
flow above a rippled bed, the kinematic properties of the flow field presented in 
$4 will be examined. Rom-Kedar, Leonard & Wiggns (1990) analysed quantitatively 
the mixing properties of a vortex pair in uniform motion in an oscillating strain field, 
a flow which approaches that of a vortex pair in a wavy-walled channel in the limit 
when both the separation between the vortices (relative to their distances from the 
wall) and the amplitude of the wall-waviness are small. Whereas such a flow shares 
many of the same features as the flow field discussed in 94, it is not obvious how their 
results can be applied to this more complicated flow. Instead, estimates of mixing 
efficiency are quantified in $6.3 through an ‘equivalent’ vertical dispersion coefficient 
computed from the flow. 

6.1. Poincarb section 
The locations of the same fluid particles at the same phase in succeeding wave periods 
give a global qualitative description of the nature of mixing by the flow field (Ottino 
1989, gs5.5, 7.3.1, 8.2.2). Figure 5 shows the Poincarb section of 420 particles, at 
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FIGURE 6. Scaled displacements in one wave period of the same 420 particles initially placed as in 
figure 5 and over half the duration. The displacements are from t = n to t = n + 1, n = 0,2,4, ..., 98. 
Owing to the large magnitudes of these displacements near the ripple surface, their magnitudes are 
reduced by a factor of 20. To increase spatial resolution, vectors originating above any ripple length 
are duplicated above adjacent ripple lengths. Note that the flow field is spatially periodic. 

t = 1,2, ..., 200, placed uniformly over one ripple length (0 d x d 1, 0 < y d 1) at 
t = 0. The periodic flow field used is that in the twenty-seventh wave period of 
computation of (2.1) and (2.2) starting with y = y, (3.2) (figure 1). 

The fluid particles wander over nine ripple lengths over the duration of simulation 
and their dispersion is asymmetric on the two sides of the ripple length over which 
the particles originate. Away from the ripple surface, the net displacements from one 
period to the next are small. These displacements follow trajectories which are nearly 
elliptical and reminiscent of the vortical flow shown in figure 1. Immediately above 
the ripple surface, on the other hand, the section is chaotic. The Poincari maps at 
other times, e.g. at t = n + i, n = 0,1,2, ..., are qualitatively similar. 

Further insights into the mixing characteristics of the flow field can be obtained from 
a plot of the net displacements of fluid particles in one wave period. The magnitudes 
and spatial variations of the displacement vectors give a qualitative picture of the 
local rate of mixing. Figure 6 shows the displacement vectors of the same 420 particles 
at every other wave period and over half of the duration of figure 5 (i.e. from t = n 
to t = n + 1, n = 0,2,4, ..., 98). These displacements follow well defined trajectories 
away from the rippled bed, forming two families of incomplete elliptical trajectories 
with opposite circulations, each about half a ripple length in width. Close to the 
ripple surface, however, the displacements are much more complicated. Displacement 
vectors of large magnitudes extend across the entire ripple length, and vary both 
vertically and horizontally in their magnitudes and directions. Vortex-like circulations 
can be identified above the ripple crest. 
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FIGURE 7. Deformation of a vertical line of fluid above a ripple crest over one wave period in 
the time-periodic flow field of s = 0.1, R = 1250, and S = 1. Markers are placed at distances of 
1, 0.0007; 2, 0.0070; 3, 0.0365; 4, 0.0767; 5, 0.1642; and 6, 0.2575 ripple lengths above the crest 
(x = 0, y = 0.001, 0.01, 0.05, 0.1, 0.2, and 0.3) at the beginning of the wave period. The arrows 
mark the ripple crest above which the line of fluid originates. (a) t = 0, (b)  t = 0.25, (c) t = 0.5, ( d )  
t = 0.625, ( e )  t = 0.75, ( f ) t = 1. 

6.2. Deformation of vertical lines of fluid 
The vortex-like displacements of fluid particles in figure 6 above a ripple crest suggest 
that the dispersion of fluid particles above ripple crests may be quite different from 
that above ripple troughs. This can be illustrated by the deformations of vertical line 
segments of fluid particles above a crest and above a trough. 

Two features stand out in the deformation of the vertical line of fluid above a crest 
in one wave period (figure 7). Close to the ripple surface, the dispersive effects of the 
coupling of high shear and vortically induced velocity normal to the bed is apparent. 
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FIGURE 8. Deformation of a vertical line of fluid above a ripple trough over one wave period in 
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1, 0.0013; 2, 0.0130; 3, 0.0635; 4, 0.1233; 5, 0.2358; and 6, 0.3423 ripple lengths above the trough 
(x = 0.5, y = 0.001, 0.01, 0.05, 0.1, 0.2 and 0.3) at the beginning of the wave period. The arrows 
mark the rinnle trniioh ahnire whirh the linp nf fliiirl nrirrinatpc (ni  t = n (hi  t = n 7 5  (pi t - n 5 b" u""," ,,111"11 cll" llll" "I l l Y l U  ""b"'U."Y. \u, 1 - ") \ Y ,  1 - ".-a) ("1 I - ".a, --YY-- -*-- ...-... .-.- 
( d )  t = 0.625, ( e )  t = 0.75, ( f  ) t = 1. 

The fluid particle labelled 2 is initially at a small distance above the crest, (x,y) = 

(0, 0.010) or ( 2 , j )  = (0, 0.057), and moves very little in the first half-period owing to 
the small velocity close to the ripple surface. The vortical flow induces a slight upward 
displacement over this half-period, moving the particle away from the ripple surface 
where the flow is considerably stronger. Consequently, the particle is convected at 
close to the velocity of the ambient flow in the second half-period. Fluid particles 
labelled 1 and 2, originally at a distance of 0.03L apart, are now separated by close 
to a ripple length. The large stretching of the line segment between markers 1, 2, and 
3 leads to considerable horizontal mixing immediately above the ripple crest. 

Higher up above the bed, vortical motion leads to a roll-up of the line of fluid. The 
line segments between markers 3 and 5 are stretched and convoluted to a large extent. 
The resulting lamellar structure entrains neighbouring fluid into a much increased 
contact area for mixing. 

The deformation of a vertical line of fluid above a trough is quite different 
(figure 8). A point at the same elevation y = 0.010 in the mapped plane, or 
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(E, 9 )  = (0.500, -0.037), is displaced much further in the first half-period than a point 
at the same elevation above the crest. As opposed to the upward motion induced by 
the vortices immediately above a crest, the induced movement is downwards. This 
leads to a smaller horizontal displacement in the second half-period. Higher up, on 
the other hand, the developing vortex in the second half-period lifts a part of the line 
segment further away from the bed and leads to a larger displacement in the second 
half-period. This results in large stretching and the tendril pattern at the end of the 
wave period. Unlike that above a ripple crest, a vertical line segment of fluid above a 
trough does not roll up over the course of a wave period. 

6.3. Deformation of horizontal lines offluid and vertical dispersion 

The question of most interest in this study, from the viewpoint of its application 
to benthic processes, would be the vertical transport of solutes across the boundary 
layer. Quantitative estimates of the magnitude of this vertical flux due to advective 
transport may be obtained from the deformation of horizontal line segments at 
different elevations from the bottom boundary. The following analysis is performed 
in coordinates in the mapped plane for expediency. The variation of the ‘empirical 
dispersion coefficients’ in the physical plane would be qualitatively similar. 

Let 5 (x, t ) ,  0 < x < 1 and 0 < t ,  be the ordinate of an initially horizontal line in 
the mapped plane, i.e. (x, 0) 3 yo. The variance of the vertical displacement of the 
line segment over a wave period, 

1 

Icy, = ; 1 dx [1 (x, 1) - Y O l 2  9 (6.1) 

gives an ‘equivalent diffusion coefficient’ due to the vertical dispersion by the flow 
field (Einstein 1905). In the following numerical computations, the integral in (6.1) is 
simulated by tracking 30000 points evenly distributed in x between 0 and 1. 

The deformation of such a horizontal line of fluid is shown in figure 9 for yo = 0.025. 
Over one wave period, the line segment stretches and folds at both its ends and also 
at the centre. The stretching is especially high in the segment between markers 5 and 
6 (initially at x = 0.625 and 0.75, respectively), as is evidenced from the increase in 
the lengths of the broken line segments and their separations, both of which have a 
magnitude of 3.3 x initially. Horseshoe patterns are prominent at the end of the 
wave period. 

Deformation of horizontal lines at nearby values of y are qualitatively similar. For 
horizontal lines of fluids that are initially very close to the bed ( y  < 0.01) or further 
away from the ripple surface ( y  > O S ) ,  both the complexities and magnitudes of their 
deformations in a period are considerably smaller. 

Figure 10 is a log-log plot of K,,, against yo. Since the mean vertical displacement 
of the line segment is nonzero, an alternative dispersion coefficient 

where 

( 6 . 2 ~ )  

I 

c = 1 dx i (x,  11, (6.2b) 

is also plotted. The variations of K~~ and K{ are qualitatively the same, spanning over 
five orders of magnitude. Both remain fairly constant at their maximum values of 
O(lO-’) at O(y) = lO-l, and decrease monotonically at larger or smaller values of y. 
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FIGURE 9. Deformation of a horizontal line of fluid particles in the mapped plane over one wave 
period in the time-periodic flow field of s = 0.1, R = 1250, and S = 1. Markers are distributed 
evenly over 0 < x < 1 along the line y = 0.025 at the beginning of the wave period, with their 
coordinates in the physical plane, (Z, j j) ,  at: 1, (0.095,O.OSS); 2, (0.207,0.025); 3, (0.345, -0.005); 
4, (0.500,-0.018); 5, (0.655,-0.005); 6, (0.793,0.025); and 7, (0.905,0.055). (a) t = 0, (b)  t = 0.25, 
(c)  t = 0.5, (d) t = 0.625, (e) t = 0.75, ( f )  t = 1. 

As a comparison, the order of magnitude of molecular diffusivity of oxygen, lov9 m2 
s-l, is less than when nondimensionalized with a ripple length of 0.3 m and a 
wave period of 6 s. Hence, even in the thin diffusive layer on the ripple profile (with a 
thickness of y = O(d,/L) = for P = 1O00, equation (4.3)), the vertical dispersion 
due to a separated flow can be of a magnitude comparable to molecular diffusion. 

More importantly, the dispersion coefficients icyo and i c ~  can be an order of magni- 
tude larger than molecular diffusivity in the region where the time-averaged concentra- 
tion gradient is linear. For the case of P = 1 discussed in $5, the nondimensionalized 
molecular diffusivity has a value of ic/(L2/T) = for a ripple length of 0.3 m 
and a wave period of 6 s. Both icy, and K C  exceed in 0.01 < y < 0.5, whereas 
in figure 3, the region of linear concentration extends up to y = 0.05, at which 
O(lcYo, rcc) rn 

7. Discussion 
The role of wave-induced separated flow in the transport of dissolved substances 

immediately above a rippled bed has been assessed under idealized conditions. The 
velocity field is time-periodic and composed of two simple flows, one purely oscillatory 
(ys defined in (3.2)) and one with two persistent vortices above each ripple length. 
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FIGURE 10. Empirical dispersion coefficients as a function of y (ordinate in the mapped plane), 
estimated from the dispersion of fluid particles over a wave period in the periodic flow field 
with s = 0.1, R = 1250, and S = 1. The coefficients xy,(+) and q ( x )  are computed from 
the deformation of an initially horizontal line y = yo  in the mapped plane according to (6.1) 
and (6.2), respectively. For the nondimensionalization and flow parameters used, the vertical 
scale of bottom roughness is y = 0.1, and the thickness of the Stokes viscid boundary layer is 
0(6,/L) = (vT)I/' /L = (n/RS)'/' = 0.050. The thickness of the oscillatory diffusive layer is, for 
P = 1 or ~1 = v = lop6 rn2s-', O(6JL) = ( I ~ ~ T ) ' / * / L  = (n /PRS)1/2  = 0.05, and for P = lo3 
or = m2s&, 0(6 , /L )  = 0.0016. Nondimensionalized molecular diffusivity of oxygen is 
xl/(L2/T) = for P = 1 and K . ~ / ( L ~ / T )  NN lo-' for P = lo3 for a ripple length of 0.3 m and a 
wave period of 6 s. 

During each half-period, the vortex generated at the lee of a ripple crest merges with 
one of the two existing vortices advecting with the oscillatory flow. 

Material lines of fluid deform in complicated patterns which vary considerably both 
along the ripple length and with increasing distance from the bed. The boundary- 
generated vortical flow induces an advective transport normal to the bed. Close to 
the sediment surface, this normal velocity couples with the high shear and results in 
large net displacements of fluid particles in one wave period. Such fluid motions lead 
to an efficient mixing mechanism. 

The magnitude of advective transport can be significantly higher than molecular 
diffusion in the region from within the 'diffusive boundary layer' to a height of a ripple 
length from the bed. A diffusive boundary layer (DBL) is commonly assumed to be 
the layer immediately above a sediment bed where the time-averaged concentration 
gradient in the vertical is linear, and solute transport within the DBL has often been 
estimated using a diffusion-type model in field and laboratory studies in geochemistry. 
Results in $55 and 6 show that, owing to advective transport and the two-dimensional 
nature of the physical system, a linear mean concentration gradient does not warrant 
a one-dimensional diffusion-type transport model. 

Advective transport can also lead to significant dispersion in the horizontal. Fluid 
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particles originating from above one single ripple length can be found above nine 
adjacent ripple lengths over the course of the subsequent 200 wave periods (figure 5) .  
Line segments of fluid that are initially vertical are also deformed considerably at the 
end of a wave period (figures 7 and 8). An ‘equivalent diffusion coefficient’ in the 
horizontal would be orders of magnitude higher than that of molecular diffusivity (but 
its value would vary with the vertical extent of the fluid element used in computing 
such an estimate). 

Limitations on available computation resources have restricted the present study to 
flows considerably weaker than those commonly found in the field.? For example, the 
dimensionless parameters give RS = aL2/(vT)  w 47000 for L = 0.3 m, T = 6 s, and 
s = 0.1. If R is to be kept sufficiently low to achieve numerical accuracy, S would have 
to be so high that the resulting vortical flow would be insignificant. The parameters 
in this study, R = 1250, S = 1 and s = 0.1, give U2T = 125nv/s w 4 x For a 
ripple height of even as low as 1 cm, this would require U < 1.3 cm s-l and T > 25 s. 
Nevertheless, this weak but separated flow reveals many characteristics of chaotic 
mixing such as tendrils, whorls, and Smale horseshoe structures, and is relatively 
simple to study owing to its temporal and spatial periodicities. I believe that the 
same qualitative features of solute transport found in the present study would also 
be present at higher values of the dimensionless parameters. 

Local concentration values oscillate at twice the wave frequency (figure 3) whereas 
those measured in coastal water by Gundersen & Jarrgensen (1990) oscillate at the 
wave frequency. This difference may be due to an irregular topography at the site 
the measurements were made, for example if vortices were shedded from one side 
of the probe only. The results of $5 show that the concentration field is sensitive to 
the positions of the vortices, and both Blondeaux & Vittori (19914 and Shum (1988) 
found that the trajectories of the boundary-generated vortices vary considerably with 
flow conditions (the Reynolds number and the Strouhal number). Given the limited 
range of flow parameters these numerical solutions can resolve at present, laboratory 
experiments appear to be a more promising approach to resolve the discrepancy. 

As this study is focused on the vortical flow generated at the bottom boundary, 
contributions to solute transport due to ambient turbulence have not been modelled. 
In the present model, the downward flux of solutes near the upper boundary of the 
computational domain is due to diffusion. In the field, ambient turbulence dominates 
vertical solute transport away from the bed and a more uniform solute concentration 
can be expected. 

The sediment surface has been assumed to be impermeable and at a constant solute 
concentration for expediency. Shum (1992) showed that the wave-induced pore water 
flow can lead to a percolation pattern that varies appreciably both within the wave 
period and along the ripple length. Hence, the deformation of fluid elements presented 
in 96 may be different when percolation effects are important. To properly account for 
the effects of percolation would require orders of magnitude increase in computational 
efforts, however. The pore water flow field depends on a number of factors, among 
them the ratio of gravity wavelength to the thickness of the permeable sediment layer. 
Straightforward coupling of (2.1) and (2.2) to the pore water flow below the rippled 
bed would therefore require a computational domain with a horizontal extent that of 
the gravity wavelength. 

The boundary solute concentration may also vary along the ripple surface. For 

7 See for example Dingler & Inman (1976) for typical ripple dimensions as a function of ambient 
flow conditions. 
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the case of a solute being consumed inside the sediment according to first-order 
reaction kinetics, Shum (1993) showed that the wave-induced pore water flow may 
lead to a much lower solute concentration immediately below a ripple crest than that 
immediately below a trough. The variation in boundary concentration increases with 
the magnitude of pore water flow and would alter the concentration field discussed 
in $5. The modifications needed in the numerical model to account for a variable 
bottom boundary concentration, however, is straightforward. 

Advective transport is shown to dominate even in the so-called ‘diffusive boundary 
layer’ in a separated oscillatory boundary layer. Further numerical and experimental 
studies are needed to explore how variations in turbulence level would influence this 
transport characteristic. Aside from applications to benthic processes in geochemistry, 
these results may also help in furthering our understanding in other fields such as 
marine biology (e.g. boundary layers around organisms, Lazier & Mann 1989) and 
heat transport (e.g. cooling over ribbed surfaces). 

Another related problem of interest is the mixing due to eddies generated around 
headlands or other coastline features. Results in $6 show that the dispersion due to 
boundary-generated vortices can be highly variable in space, and this dispersion is 
likely to be quite sensitive to the flow parameters. In numerical ocean circulation 
models, a diffusion-type model may therefore not be sufficient to describe the dis- 
persion near land boundaries when coastal features with a length scale of or smaller 
than the grid size are present. 

Appendix. The equivalence of (2.10) to an imposed oscillatory pressure 
gradient 

The flow field examined in this study is driven by an oscillatory ambient pressure 
gradient. In the streamfunction/vorticity formulation, this boundary pressure is not 
imposed explicitly. As no boundary conditions are needed for the vorticity, no further 
conditions on the far-field velocity (e.g. co = 0) could have been imposed to dictate an 
oscillatory ambient flow (as opposed to an oscillating upper boundary). Nevertheless, 
the boundary conditions (2.10) at y = y,,, impose an oscillatory pressure gradient in 
the far field, which can be seen as follows. 

Consider Navier-Stokes equations in the horizontal direction, nondimensionalized 
as in $2 and pressure scaled with pU2, 

Recall that variables with tildas are those in the physical plane. High above the 
rippled bed, 

where unscripted variables (x,y) are those in the mapped plane. The approximations 
hold for y =0(1) and follow from the conformal mapping (2.7) and (2.8) and the 
identities 

and 
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Substitution of (A 2) into (A 1) and evaluation at y = y,, with boundary conditions 
(2.10) gives 

The second term on the right-hand side of (A4) is orders of magnitude smaller than 
the first term since 1/R < in this study, and d 3 y / d y 3  k: -8o/ay at y = y,, is 
0 ( S 2 )  as computed by the finite-differencing scheme with vertical spacing 6. 

Therefore, to a good approximation, (A4) reads 

That is, the pressure gradient a p / d x  is that due to an oscillatory far-field velocity 
urn@)- 

REFERENCES 

ANDERSON, D. A., TANNEHILL, J. C. & PLETCHER, R. H. 1984 Computational Fluid Mechanics and 

BENJAMIN, T. B. 1959 Shearing flow over a wavy boundary. J. Fluid Mech. 6, 161-205. 
BLONDEAUX, P. & V ~ R I ,  G. 1991a Vorticity dynamics in an oscillatory flow over a rippled bed. J. 

BUINDEAUX, P. & VIITORI, G. 1991b A route to chaos in an oscillatory flow: Feigenbaum scenario. 

CARSLAW, H. S. & JAEGER, J. C. 1963 Operational Methods in Applied Mathematics. Dover. 
DINGLER, J. R. & INMAN, D. L. 1976 Wave-formed ripples in nearshore sands. In Proc. 14th ASCE 

Coastal Engineering Conference, pp. 2109-2126. 
Du TOIT, C. G. & SLEATH, J. F. A. 1981 Velocity measurements close to rippled beds in oscillatory 

flows. J. Fluid Mech. 112, 71-96. 
EINSTEIN, A. 1905 Uber die von der molekularkinetischen Theorie der Warme geforderte Bewegung 

von in ruhenden Flussigkeiten suspendierten Teilchen. Annln Phys. 17, (47), 549-560. (In 
German) 

GHADDAR, N. K., MAGEN, M., MIKIC, B. B. & PATERA, A. T. 1986 Numerical investigation of 
incompressible flow in grooved channels. Part 2. Resonance and oscillatory heat-transfer 
enhancement. J. Fluid Mech. 168, 541-567. 

GUNDERSEN, J. K. & J0RGENSEN, B. B. 1990 Microstructure of diffusive boundary layers and the 
oxygen uptake of the sea floor. Nature 345, 604607. 

HARA, T. & MEI, C. C. 1992 Oscillating flows over periodic ripples of finite slope. Phys. Fluids A 4, 

LAZIER, J. R. N. & MA", K. H. 1989 Turbulence and the diffusive layers around small organisms. 
Deep-sea Res. 36, 1721-1733. 

MEI, C. C. & LIU, P. L.-F. 1993 Surface waves and coastal dynamics. Ann. Rev. Fluid Mech. 25, 
215-240. 

OTTINO, J. M. 1989 The Kinematics of Mixing: Stretching, Chaos, and Transport. Cambridge Uni- 
versity Press. 

ROM-KEDAR, V., LEONARD, A. & WIGGINS, S. 1990 An analytical study of transport, mixing and 
chaos in an unsteady vortical flow. J. Fluid Mech. 214, 347-394. 

SCHLICHTING, H. 1968 Boundary Layer Theory. McGraw Hill. 
SHLJM, K. T. 1988 A numerical study of vortex dynamics over rigid ripples. Doctoral thesis, MIT. 
SHUM, K. T. 1992 Wave-induced advective transport below a rippled water-sediment interface. J. 

SHUM, K. T. 1993 The effects of wave-induced pore water circulation on the transport of reactive 

SOBEY, I. J. 1985 Dispersion caused by separation during oscillatory flow through a furrowed 

Heat Transfer. Hemisphere. 

Fluid Mech. 226, 257-289. 

Phys. Fluids A 3, 2492-2495. 

1373-1 384. 

Geophys. Res. 97, 789-808; and Corrections, 97, 14475-14477. 

solutes below a rippled sediment bed. J. Geophys. Res. 98, 10289-10301. 

channel. Chem. Engng Sci. 40, 2129-2134. 



288 K. T. Shum 

TA PHUOC LOC 1980 Numerical analysis of unsteady secondary vortices generated by an impulsively 
started circular cylinder. J.  nuid Mech. 160, 93-1 17. 

BORSNESS, C. B. & H A N R A ~ ,  T. J. 1979 Mass transfer between a flowing fluid and a solid wavy 
surface. Am. Znst. Chem. Engng J. 25, 686-697. 

VITMIRI, G. & TANDA, G. 1991 Study of separated flow and heat transfer in two-dimensional 
channels with wavy walls. In Proc. 24th Congress of Intl Assoc of Hydraulic Res. Madrid, 
Spain, pp. C203-C210. 




